急性骨髄性白血病 Acute Myeloid Leukemia (AML)

Version 1.0

2015年5月8日 原三信病院 血液内科

上村 智彦 作成

急性骨髄性白血病 Acute myeloid leukemia (AML)

白血球、赤血球、血小板などの血液細胞は、骨髄 において造血幹細胞からそれぞれの前駆細胞を経 て分化・増殖する.これらの血液前駆細胞が.「が ん化して異常に増殖することで起こる腫瘍性疾患 が急性白血病である、骨髄系細胞の場合は、急性 骨髄性白血病 (AML: Acute Myeloid Leukemia)と呼 ばれる. AMLを発症すると. 骨髄中で幼若な細胞 (異常芽球)が大量に増殖し.正常な造血が抑制さ れる、結果として、正常な白血球減少による易感染 症状態や貧血,血小板減少による出血傾向来す.

骨髄における正常造血

骨髄におけるAMLの発症

French-American-British(FAB)分類

WHO分類(2008年)

1. 特異的染色体相互転座を有するAML

- a. 染色体転座t(8;21)(q22;q22)または融合遺伝子RUNX1-RUNX1T1を有するAML
- b. 染色体第16番逆位inv(16)(p13.1q22)または転座t(16;16)(p13.1;q22)または融合遺伝子CBFB-MYH11を有するAML
- c. 急性前骨髄球性白血病[染色体転座t(15;17)(q22;q12)または融合遺伝子PML-RARAを有する]
- d. 染色体転座t(9;11)(p22;q23)またはMLLT3-MLLを有するAML
- e. 染色体転座t(6;9)(p22;q34)またはDEK-NUP214を有するAML
- f. 染色体第3番逆位 inv(3)(q21q26.2)または転座 t(3;3)(q21;q26.2)または融合遺伝子RPN1-EVI1を有するAML
- g. 染色体転座t(1;22)(p13;q13)またはRBM15-MKL1を有する巨核芽球性AML
- h. 暫定的病型:遺伝子突然変異を伴うAML (NPM1遺伝子変異, CEBPA遺伝子変異など)

2. 骨髄異形成関連の変化を伴うAML

- a. 多血球系に異形成を有するAML
- b. 骨髄異形成症候群(MDS)から移行したAML
- c. MDSに関連した染色体異常を有するAML

3. 治療に関連した骨髄性腫瘍

4. 上記以外の急性骨髄性白血病

- a. 最小分化型AML: FAB分類の"MO"に相当
- b. 未分化型AML: FAB分類の"M1"に相当
- c. 分化型AML: FAB分類の"M2"に相当
- d. 急性骨髄単球性白血病: FAB分類の"M4"に相当
- e. 急性単芽球性および単球性白血病: FAB分類の"M5"に相当
- f. 急性赤芽球性白血病
 - A) 赤白血病 FAB分類の"M6"に相当
 - B) 純赤芽球型
- g. 急性巨核芽球性白血病: FAB分類の"M7"に相当
- h. 急性好塩基球性白血病
- i. 骨髄線維化を伴う急性汎骨髄症

5. 骨髄肉腫

6. ダウン症候群関連骨髄増殖

- a. 一過性骨髄増殖異常症
- b. ダウン症候群関連骨髄性白血病

7. 芽球性形質細胞様樹状細胞腫瘍

薬物療法への治療反応性が良いもの。

薬物療法への治療反応性が悪いもの。

AMLの骨髄像

正常骨髄(x400)

AML(x600)

AMLの疫学

日本における骨髄性白血病の発症頻度は,毎年10 万人あたり男性 3.5人,女性 2.1人で,成人の骨髄性 白血病の70%がAMLといわれている.年齢別にみる と,21~69歳では10万人あたり0.6~6人だが,70歳 以上になると10~17人と発症頻度は増加する.

Lim MY. Clin Interv Agin 2014: 753-62

AMLの症状

•播種性血管内凝固症候群(DIC)=出血傾向と微小血栓による多臓器不全

AML診断のための検査

1. 血液検査

- ●血液学的検査(末梢血中の異常芽球の形態)
- ●生化学検査
- ●凝固系検査(播種性血管内凝固, DIC)
- ●感染症検査(HCV, HBVなど)

2. 骨髄検査

●形態学的検査

(ギムザ染色, ミエロペルオキシダーゼ染色などの特殊染色)

- ●染色体検査
- ●キメラ遺伝子スクリーニング検査
- ●FLT3-ITD, c-KIT遺伝子変異検査

3. その他

- ●体幹部CT検査
 - (肺炎などの感染評価,肝脾腫,リンパ節腫大の有無)
- ●頭部CT and/or MRI(中枢神経浸潤が疑われる場合)
- ●心エコー,腎機能検査など,臓器予備能,合併症評価の検査

AML治療の考え方

体内の白血病細胞をゼロにする = Total cell kill

感染症対策, 出血対策, 貧血対策, 消化器症状対策 etc

白血病に対する寛解導入療法の概念

白血病に対する抗癌剤治療の概念

急性骨髄性白血病 Acute Myeloid Leukemia (AML)

Version 1.0

生存曲線について

AMLの予後分類 染色体異常による予後分類

予 後公粘	SWOG/ECOG	MRC					
了夜刀积	{Slovak, 2000 #6}	{Grimwade, 2010 #3}					
良好群	inv(16) t(16;16) Core-binding t(8;21) t(15;17)	factor(CBF)inv(16)白血病t(16;16)t(8;21)					
中間群	正常核型、-Y +6 +8 del(12p)	良好群、不良群に 属さないもの					
不良群	abn(3q) -5/del(5q) t(6;9) -7/del(7q) t(9;22) abn(9q) abn(11q) abn(11p) abn(17p) abn(20q) abn(21q)	t(3;5)を除く abn(3q) inv(3) -5/del(5q), add(5q) -7/del(7q), add(7q) t(6;11) t(10;11) t(11q23) t(9;22) -17/abn(17p) 複雑核型 (≧4 aberrations)					

Slovak. Blood. 2000:4075-83; Grimwade. Blood 2010:354-65

AMLの予後分類 染色体異常による全生存率

Slovak. Blood. 2000:4075-83

AMLの予後分類 正常核型AMLにおけるNPM1, CEBPAの影響

Survival estimates, according to genotype

Schlenk RF. New Engl J Med 2008

AMLの予後分類 FLT3-ITD変異と予後の関連性

Bornhäuser M.Blood. 2007: 2264

AMLの予後分類 CBF白血病*におけるNPM1, CEBPAの影響

*CBF白血病(予後良好群) inv(16)またはt(8;21) AML

inv(16)

Paschka P. J Clin Oncol 2006

Schnittger S. Blood 2006

AMLの予後分類 予後因子となる遺伝子変異

予後不良	予後良好
FLT3-ITD変異	CEBPA変異
FLT3は、血液細胞の増殖と分化、造血幹細胞の自己複製に関与し アポトーシスを制御する受容体型チロシンキナーゼで、13q12に座 位する。骨髄内皮細胞より産生されるリガンドが結合すると活性化 され、増殖が促進される。FLT3は正常造血幹細胞の生存に寄与し、 分化とともに発現レベルが低下するが ²⁶⁰ 、AML細胞では大部分に 発現している。FLT3遺伝子変異として、傍膜貫通領域が重複して繰 り返されるFLT3-ITD変異とキナーゼ領域が変異または欠失する FLT3-KDMの2種類の遺伝子変異があり、これらの変異変異により 増殖シグナルが恒常的に活性化されることがAML発症の一因と考 えられる。CN-AMLの約30%ICFLT3-ITD変異が、約10%ICFLT3- KDM 変異が認められる ^{27,28)} 。ドイツのAML 96 studyでは化学療法 を施行されたAML予後中間群555例を、FLT3-ITD変異陽性 175例 (31.3%)とFLT3-ITD変異陰性 380例に分けて後方向視的に比較解 析した結果、FLT3-ITD変異陽性は再発率が有意に高く(21% vs. 46%; P=0.001)、全生存率が有意に劣っていた(94% vs. 49%; P<0.001) ²⁹⁾ 。FLT3変異、特にFLT3-ITD変異は白血病細胞増加に 関連するとされ、AMLにおける予後不良因子と考えられている ^{30,31)} 。	CEBPAは顆粒球造血に重要な役割を担っており ₃₈)、 CEBPA変異 はAML全体の9%、CN-AMLの13%に認められると報告されている34)、 ドイツとオーストリアの多施設前向きコホート研究で、NPM1とともに CEBPA変異陽性が、良好な完全寛解率に有意に関連することが示 された ³⁸ 。またCEBPA変異陽性CN-AMLは、NPM1変異陽性かつ FLT3-ITD陰性CN-AMLとともに、それ以外のCN-AMLより全生存率 も有意に良好であった ³⁴⁾ 。CEBPA変異は、両対立遺伝子に変異を 有するdouble CEBPA変異と単一対立遺伝子のみに変異を有する single CEBPA変異があるが、多変量解析でdouble CEBPA変異陽 性AMLのみが予後良好因子であるとされる ³⁸⁾ 。
c-KIT変異	NPM1変異
c-KIT変異は、AMLの2%に認められ、特にt(8;21)AMLやtrisomy 7を 有するAMLでは比較的高頻度に認められる。t(8;21)AMLにおいて、 c-KIT変異は、生存期間(304日 vs. 1836日; P=0.006)と無イベント 生存期(244日 vs. 744日; P=0.003)を有意に短縮すると報告されて いる39)。またinv(16)AMLにおいても、無イベント生存率や無再発生 存率への関連性については否定的な報告もあるものの ⁴⁰⁾ 、c-KIT変 異陽性群は陰性群に比較して有意に再発率が高いとされる ⁴¹⁾ 。	NPM1は5q35に位置するAMLや悪性リンパ腫の責任遺伝子で、 NPM1変異はAML全体の25~35%、CN-AMLの45~60%に認められ る ⁴⁾ 。FLT3-ITD変異陽性AMLの約50%にNPM1変異が認められ、 FLT3-ITD変異と強い相関関係を示す ³³⁾ 。NPM1変異陽性AMLは、 高い寛解導入率や化学療法高感受性を示し、FLT3-ITD変異陰性 であれば予後良好である ³⁴⁻³⁷⁾ 。

上村智彦, 宮本敏浩. 血液フロンティア 2015 in press

AMLの予後分類 予後因子となる遺伝子変異

- 26. Kikushige Y, Yoshimoto G, Miyamoto T, et al. Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol 2008; 180: 7358-67.
- 27. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59-66.
- Gale RE, Hills R, Kottaridis PD, et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood 2005; 106: 3658-65.
- 29. Bornhauser M, Illmer T, Schaich M, et al. Improved outcome after stem-cell transplantation in FLT3/ITD-positive AML. Blood 2007; 109: 2264-5; author reply 2265.
- 30. Gale RE, Green C, Allen C, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008; 111: 2776-84.
- 31. Pratcorona M, Brunet S, Nomdedeu J, et al. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy. Blood 2013; 121: 2734-8.
- 32. Breccia M, Loglisci G, Loglisci MG, et al. FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: long-term follow-up analysis. Haematologica 2013; 98: e161-3.
- 33. Tong WG, Sandhu VK, Wood BL, et al. Correlation between peripheral blood and bone marrow regarding FLT3-ITD and NPM1 mutational status in patients with acute myeloid leukemia. Haematologica 2015; 100: e97-8.
- Schlenk RF, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909-18.

- 35. Schlenk RF, Dohner K, Kneba M, et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 2009; 94: 54-60.
- 36. Becker H, Marcucci G, Maharry K, et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 596-604.
- Buchner T, Berdel WE, Haferlach C, et al. Age-related risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol 2009; 27: 61-9.
- 38. Taskesen E, Bullinger L, Corbacioglu A, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 2011; 117: 2469-75.
- 39. Schnittger S, Kohl TM, Haferlach T, et al. KIT-D816 mutations in AML1-ETOpositive AML are associated with impaired event-free and overall survival. Blood 2006; 107: 1791-9.
- 40. Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006; 20: 965-70.
- 41. Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 2006; 24: 3904-11.

AMLの予後分類 遺伝子変異による予後分類

NCCN guideline, AML 2015 version 1

急性骨髄性白血病 Acute Myeloid Leukemia (AML)

Version 1.0

AMLに対する寛解導入療法 DNR/AraC vs. IDR/AraC

Albert Einstein Cancer Center (US) HOVON: Dutch-Belgian Cooperative Trial Group for Hemato-Oncology AMLSG: German AML Study Group

寛解導入療法 High-dose DNR

Phase III, n = 657, age 17 – 60 yrs <u>DNR 45 mg/sqm x 3d</u> + AraC 100 mg/sqm x 7d vs. <u>DNR 90 mg/sqm x 3d</u> + AraC 100mg/sqm x 7d

寬解導入療法 High-dose DNR

Phase III, n = 657, age 17 - 60 yrs DNR 45 mg/sqm x 3d + AraC 100 mg/sqm x 7d vs. DNR 90 mg/sqm x 3d + AraC 100mg/sqm x 7d

B Favorable or Intermediate Cytogenetic Profile

Probability of Overall Survival High dose 0.2-P=0.45 0.1 Standard dose 0.0 10 50 60 70 0 20 30 Months

Induction Treatment	Total	Deaths	Censored	Median Surviva
Standard dose (45 mg/m ² /day)	59	46	13	10.2 mo
High dose (90 mg/m²/day)	63	45	18	10.4 mo

DNR 90 mg/m²による改善効果 は、予後良好群、特にCBF白血 病(2年非再発生存率 91% vs. 55%; P=0.0033)および中間群 の染色体異常では有意であっ たが、予後不良群では有意差 は得られていない.

寛解導入療法 High-dose DNR

Phase III, n = 657, age 17 – 60 yrs

DNR 45 mg/sqm x 3d + AraC 100 mg/sqm x 7d

vs. DNR 90 mg/sqm x 3d + AraC 100mg/sqm x 7d

<予後不良 FLT3-ITD変異>

急性骨髄性白血病 Acute Myeloid Leukemia (AML)

Version 1.0

AMLに対する寛解後療法(地固め療法) 日本血液学会 ガイドライン

AMLに対する寛解後療法(強化療法) High-dose AraC

de novo AML (n = 1088), DNR 45x3d (\leq 60y) or 30mgx3d (>60y) + AraC 100mgx7 \rightarrow CR1 Phase III, n = 596

RCT, Consolidation therapy x 4 cycles

AraC 100mg/sqm x5d; AraC 400mg/sqm x4d; AraC 3g/sqmx2x3d (d1,3,5)

CALGB 8525

Mayer RJ. New Engl J Med 1994

寛解後療法におけるHigh-dose AraCの意義

de novo AML (\leq 60y) (n = 474), DNR 45x3d + AraC 200mgx7 \rightarrow CR1 (n = 342) RCT (n = 309)

RCT, High-dose AraC 3g x2 x3d, 3 cycles vs. AraC 3g x2 x3d, Etop + CY, diaziquone + Mit

多剤併用療法は、High-dose AraCと同等

Moore JO. Blood 2005

National Comprehensive Cancer Network[®]

NCCN

AMLに対する寛解後療法

血液がんに対する自家移植の概念

略語 G-CSF, granulocyte-colony-stimulating factor

血液がんに対する自家移植の概念

化学療法 vs. 自家移植 vs. 同種移植 in CR1

<u>AML全体</u>

CR1; 第1寛解期

Study Group	Study design	再	再発率(%)			無病生存率(%)			全生存率(%)			
著者 発表年	(n)		自家	同種	化療	自家	同種	化療	自家	同種		
EORTC/GIMEMA/AML8 Zittoun 1995	化療 vs 自家 vs 同種 (126 vs 128 vs 168)	57	41	24	30*	48	55	54	50	53		
GOELAM Harousseau 1997	化療 vs 自家 vs 同種 (71 vs 75 vs 73)	55	45	37	43	48	49	54	50	53		
ECOG/SWOG/CALGB Zittoun 1997	化療 vs 自家 vs 同種 (117 vs 116 vs 113)	61	48	29	34	34	43	52	43	46		
MRC AML10 Burnett 1998	化療 vs 自家 (191 vs 190)	58	37		40*	53		45	57			
EORTC/GIMEMA/AML10 Suciu 2003	自家 vs 同種 (441 vs 293)		52	30		42*	52		58	50		
HOVON/SAKK Cornelissen 2007	化療 vs 自家 vs 同種 ドナー有無 (126 vs 128 vs 175)	59 ドナー無は化療と自 家をまとめて解析		59 ドナー無は化療と自 32 家をまとめて解析		32	37* 32 ドナー無は化療と自 家をまとめて解析		48	46 ドナー無は化療と自 家をまとめて解析		54

* p<0.05

化学療法 vs. 自家移植 vs. 同種移植 in CR1

AML染色体異常によるリスク別

CR1; 第1寛解期

Suciu S. Blood 2003

Cornelissen JJ. Blood 2007

寛解後療法における自家末梢血幹細胞移植

AML (n = 81), non-M3, retrospective analysis

Induction therapy, IDR + AraC

Consolidation therapy, Mit + idAraC \rightarrow Etop + idAraC \rightarrow PBSC collection Myeloablative conditioning regimen followed by auto-PBSCT

Eto T. Int J Hematol 2013

寛解後療法における自家末梢血幹細胞移植

AML (n = 81), non-M3, retrospective analysis

Induction therapy, IDR + AraC

Consolidation therapy, Mit + idAraC \rightarrow Etop + idAraC \rightarrow PBSC collection Myeloablative conditioning regimen followed by auto-PBSCT

Eto T. Int J Hematol 2013

福岡BMTグループにおける移植前処置(自家移植)

移植前処置: G-CSF併用BEA大量化学療法

ed AraC 移植	病日	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
200µg/sqm,	div.	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark						
400µg/sqm,	div.								\checkmark	\checkmark				
100mg/sqm,	div.			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
3000mg/sqm,	div. x 2										\checkmark	\checkmark		
											1	\checkmark		
4mg/kg,	po.				1	1	\checkmark	1						
20mg/kg,	div.								\checkmark	\checkmark				
	ed AraC 移植: 200µg/sqm, 400µg/sqm, 100mg/sqm, 3000mg/sqm, 4mg/kg, 20mg/kg,	ed AraC 移植,所日 200µg/sqm, div. 400µg/sqm, div. 100mg/sqm, div. 3000mg/sqm, div. x 2 4mg/kg, po. 20mg/kg, div.	ed AraC 移植病日 -12 200µg/sqm, div. ↓ 400µg/sqm, div. ↓ 100mg/sqm, div. ↓ 3000mg/sqm, div. x 2 ↓ 4mg/kg, po. ↓ 20mg/kg, div. ↓	ed AraC 移植病日 -12-11 200µg/sqm, div. ↓ ↓ 400µg/sqm, div. ↓ 100mg/sqm, div. ✓ 3000mg/sqm, div. x 2 ✓ 4mg/kg, po. ✓ 20mg/kg, div. ✓	ed AraC 移植病日 -12-11-10 200µg/sqm, div. ↓ ↓ ↓ 400µg/sqm, div. ↓ 100mg/sqm, div. ↓ 3000mg/sqm, div. x 2 ↓ 4mg/kg, po. 20mg/kg, 20mg/kg, div. ↓	ed AraC 移植 病 日 -12 - 11 - 10 - 9 200µg/sqm, div. ↓ ↓ ↓ ↓ 400µg/sqm, div. ↓ 100mg/sqm, div. ↓ 3000mg/sqm, div. x 2 ↓ 4mg/kg, po. ↓ 20mg/kg, div. ↓	ed AraC移植病日-12 - 11 - 10 - 9-8200µg/sqm,div. $\checkmark ~ \checkmark ~ \checkmark ~ \checkmark$ \checkmark 400µg/sqm,div. $\checkmark ~ \checkmark ~ \checkmark ~ \checkmark$ \checkmark 100mg/sqm,div. $\checkmark ~ \checkmark ~ \checkmark$ \checkmark 3000mg/sqm,div. x 2 $\checkmark ~ \checkmark$ 4mg/kg,po. $\checkmark ~ \checkmark$ 20mg/kg,div.	ed Arac移植-12 - 11 - 10-9-8-7 $200\mug/sqm,$ div. $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow$ $\downarrow ~ \downarrow$ $\downarrow ~ \downarrow$ $400\mug/sqm,$ div. $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow$ $100mg/sqm,$ div. $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow$ $3000mg/sqm,$ div. x 2 $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $4mg/kg,$ po. $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow$ $20mg/kg,$ div. $\downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow$	ed Arac移植病日-12-11-10-9-8-7-6200µg/sqm,div. $\downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ $\downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow ~ \downarrow$ 400µg/sqm,div. $\downarrow ~ \downarrow ~$	ed Arac移植示日-12 -11 -10-9-8-7-6-5200µg/sqm,div. \downarrow 400µg/sqm,div. \downarrow 100mg/sqm,div. \downarrow 3000mg/sqm,div. x 2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow 4mg/kg,po. \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	ed AraC移植日-12 - 11 - 10-9-8-7-6-5-4200µg/sqm,div. $\downarrow \downarrow $	ed AraC移植病日-12-11-10-9-8-7-6-5-4-3200µg/sqm,div. $\downarrow \downarrow $	ed AraC移植病日-12-11-10-9-8-7-6-5-4-3-2200µg/sqm,div. $\downarrow ~ \downarrow ~$	ed AraC移植病日-12-11-10-9-8-7-6-5-4-3-2-1200µg/sqm,div. $\downarrow \downarrow $

G-CSF併用移植前処置の意義

- 1. G-CSF投与により、G-CSF受容体を発現する静止期のAML幹 細胞を刺激して細胞周期に導入し、細胞周期特異的な抗癌 剤(シタラビン)に対する感受性を高める.
- G-CSF投与により、成熟好中球が分泌した 2. エステラーゼ、セリンプロテアーゼなどの 蛋白分解酵素が接着分子を切断することで. 白血病幹細胞 白血病幹細胞をnicheから解離させ. 未分化性や薬剤抵抗性が喪失. 成熟好中球 抗癌剤感受性を高める. VLA4 蛋白分解酵素の放出 CXCR4 VCAM1 SDF² いかにしてAMLの抗癌剤感受性を高めるか 支持細胞

化学療法におけるG-CSF併用効果

Figure 1. Treatment Regimens.

Patients were randomly assigned to receive two cycles of induction chemotherapy alone or with the addition of granulocyte colony-stimulating factor (G-CSF) beginning one day before the start of chemotherapy (day 0) through the last day of chemotherapy.

化学療法におけるG-CSF併用効果

AML (n = 630), non-M3, retrospective analysis RCT, chemotherapy + G-CSF vs. chemotherapy After 2nd cycle of chemotherapy, chemotherapy / auto-SCT / allo-SCT

AMLIC対する化学療法にG-CSF併用の有無でランダム比較

Löwenberg B. New Engl J Med 2003

化学療法におけるG-CSF併用効果

AML (n = 630), non-M3, retrospective analysis RCT, chemotherapy + G-CSF vs. chemotherapy After 2nd cycle of chemotherapy, chemotherapy / auto-SCT / allo-SCT

AMLに対する化学療法にG-CSF併用の有無でランダム比較

予後中間群

予後不良群

■ G-CSFによるprimingはstandard risk AMLには有用?

Löwenberg B. New Engl J Med 2003

FLT-3-ITD (+) AMLに対するHigh-dose DNR

FLT3遺伝子異常の有無による 自家移植(auto-PBSCT)の治療成績

Bornhäuser M.Blood. 2007: 2264

National Comprehensive Cancer Network[®]

NCCN

AMLに対する寛解後療法

AMLの予後分類 遺伝子変異による予後分類

NCCN guideline, AML 2015 version 1

National Comprehensive Cancer Network[®]

NCCN

AMLに対する寛解後療法

急性骨髄性白血病 Acute Myeloid Leukemia (AML)

Version 1.0

通常の抗癌剤治療<自家移植<<u>同種移植</u>

- 1. 通常の抗癌剤治療
- 2. 超大量抗癌剤治療
 自家移植;骨髄,末梢血 (自分→自分)

同種移植:骨髄,末梢血,臍帯血 (他人→自分)

超大量抗癌剤治療・免疫療法

注:ミニ移植は「超大量化学療法」ではありません

免疫とは何か?
 同種造血幹細胞移植を理解するために

◆HLAやマイナー抗原などの蛋白質

血液がんに対する同種移植の概念

同種移植後の免疫反応の功罪

化学療法 vs. 自家移植 vs. 同種移植 in CR1

<u>AML染色体異常によるリスク別(DFS)</u>

Suciu S. Blood 2003

Cornelissen JJ. Blood 2007

同種移植 (適合血縁) vs. 非移植 染色体正常核型 AML in CR1

RFS according to availability of an HLA-MRD

Schlenk RF. New Engl J Med 2008

AMLの予後分類(NCCN)からみた 同種移植の適応

NCCN guideline, AML 2015 version 1

治療抵抗性·難治性AML

Bennett JM. Cancer 1997; Tallman MS. Blood 2005; Ohtake Blood 2011

ivBu-based MAC vs. TBI-based MAC

Bredeson C. Blood 2013

経口 or 静注 Bu/CY vs. TBI/CY

Center for International Blood and Marrow Transplant Research (CIBMTR)

AML in CR (n = 1230)

	経口BuCy vs Cy/TBI RR (95% CI)	静注BuCy vs Cy/TBI RR (95% CI)	Oral BuCy vs IV BuCy RR (95% CI)	Overall P value
急性GVHD III-IV	0.72 (0.53-0.98)	0.72 (0.51-1.02)	1.00 (0.67-1.49)	0.048
慢性GVHD	1.01 (0.73-1.39)	1.13 (0.87-1.47)	0.89 (0.58-1.37)	0.65
非再発死亡率	0.72 (0.52-1.01)	0.58 (0.39-0.86)	1.24 (0.79-1.95)	0.011
再発 (1年以内)	0.81 (0.59-1.11)	1.06 (0.76-1.49)	0.76 (0.52-1.12)	0.31
再発 (1年以降)§	1.22 (0.78-1.90)	0.24 (0.084-0.66)	5.19 (1.85-14.57)	0.0074
無白血病生存率	0.87 (0.72-1.06)	0.70 (0.55-0.88)	1.25 (0.96-1.62)	0.0096
全生存率	0.78 (0.60-1.01)	0.68 (0.52-0.88)	1.15 (0.85-1.56)	0.0084

静注BuはTBIに比べ、全生存率、再発率、無白血病生存率、非再発死亡率を 有意に改善したが、経口Buではこうした改善は得られず、

Copelan E. Blood 2013:3863-70

前処置の強度

TBI(2Gy) Strob, et al. Blood 1997 / Int J Radiat Oncol Biol Phys 1993

高齢者MDS/AML-MDSに対するallo-SCT

静注Buを用いた至適前処置の開発

静注Buを用いた至適前処置の開発

前処置の強度

TBI(2Gy) Strob, et al. Blood 1997 / Int J Radiat Oncol Biol Phys 1993

JSCT-Flu/Bu 13

Flu/ivBu(12.8mg/kg) + G-CSF-combined AraC

55~70歳, PS 0~2, AML or high risk MDS

G-CSF-combined AraC		-8	-7	-6	-5	-4	-3	-2	-1	0	
G-CSF	200 μ g/sqm	div	\downarrow	Ļ	Ļ	↓	Ļ	↓	Ļ		
AraC	100mg/sqm	cont. div		Ļ	Ļ	Ļ	Ļ				
	<mark>2g∕sqm</mark>	2hr div						↓ ↓	↓ ↓		
Fludarabine	30mg∕sqm			Ļ	↓	↓	Ļ	Ļ	↓		
iv Busulfan	3.2mg/kg			Ļ	\downarrow	\downarrow	Ļ				
TBI 0 -4 Gy			←		-	この期間	引いずれ	この日1	C		\rightarrow
移植											Ŷ

主要評価項目:1年時点での無イベント生存割合

静注Buを用いた至適前処置の開発

前処置の強度

Flu/MEL/Bu for UCBT

虎の門病院

TBI(全身放射線照射)を用いない臍帯血移植 前処置

⇒ 生着率 90.2%

Yamamoto H. ASH 2013. #P-2024 Yamamoto H. Bone Marrow Transplant 2014:607-9